zea.models.unet¶
UNet models and architectures
Functions
|
Get a basic UNet architecture with time-conditional sinusoidal embeddings |
|
Get a basic UNet architecture |
Classes
|
UNet model |
|
UNet model with time-conditional sinusoidal embedding |
- class zea.models.unet.UNetTimeConditional(*args, **kwargs)[source]¶
Bases:
BaseModel
UNet model with time-conditional sinusoidal embedding
- zea.models.unet.get_time_conditional_unetwork(image_shape, widths=None, block_depth=None, embedding_min_frequency=1.0, embedding_max_frequency=1000.0, embedding_dims=32)[source]¶
Get a basic UNet architecture with time-conditional sinusoidal embeddings
Used in Diffusion Models.
- Parameters:
image_shape – tuple, (height, width, channels)
widths – list, number of filters in each layer
block_depth – int, number of residual blocks in each down/up block
embedding_min_frequency – float, minimum frequency for sinusoidal embeddings
embedding_max_frequency – float, maximum frequency for sinusoidal embeddings
embedding_dims – int, number of dimensions for sinusoidal embeddings
- Returns:
keras.Model