zea.backend.torch¶
Pytorch Ultrasound Beamforming Library.
Initialize modules for registries.
Functions
|
Applies a Torch function to inputs on a specified device. |
- zea.backend.torch.on_device_torch(func, inputs, device, return_numpy=False, **kwargs)[source]¶
Applies a Torch function to inputs on a specified device.
- Parameters:
func (function) – Function to apply to the input data.
inputs (ndarray) – Input array.
device (str) – Device string, e.g.
'cuda'
,'gpu'
, or'cpu'
.return_numpy (bool, optional) – Whether to convert output data back to numpy. Defaults to False.
**kwargs – Additional keyword arguments to be passed to the
func
.
- Returns:
The output data.
- Return type:
torch.Tensor or ndarray
- Raises:
AssertionError – If
func
is not a function from the torch library.
Note
This function converts the
inputs
array to a torch.Tensor and moves it to the specifieddevice
. It then applies thefunc
function to the inputs and returns the output data. If the output is a dictionary, it extracts the first value from the dictionary. Ifreturn_numpy
is True, it converts the output data back to a numpy array before returning.Example
import torch def square(x): return x**2 inputs = [1, 2, 3, 4, 5] device = "cuda" output = on_device_torch(square, inputs, device) print(output)
Modules
Container for custom loss functions. |